Alemtuzumab for multiple sclerosis: the new concept of immunomodulation
نویسندگان
چکیده
Alemtuzumab (Lemtrada®) is a humanized anti-CD52 IgG1 monoclonal antibody that depletes CD52-expressing cells from the circulation. Robust clinical and radiologic data, derived from clinical trials and long-term observational studies, indicate that alemtuzumab induces a marked immunosuppression related to the depletion of circulating T and B lymphocytes. However, recent advances suggest that the long-term clinical effects of alemtuzumab are probably due to unique qualitative changes in the process of lymphocyte repopulation of the immune system. This leads to a particular rebalancing of the immune system. In this paper we review the immunomodulatory mechanisms underlying the therapeutic effect of alemtuzumab in pre-clinical models and in patients with relapsing remitting multiple sclerosis (RRMS), and stress the importance of a monoclonal antibody-based immunosuppression for treating the severe forms of RRMS. Alemtuzumab has many features of the ideal immunomodulatory drug: rapid biological and clinical actions and and long-lasting benefit. Alemtuzumab can be used as rescue therapy or as first line drug in severe-onset MS. Thus, the availability of alemtuzumab constitutes a significant step forward in the therapy of MS.
منابع مشابه
O 9: Immunomodulatory Effects of Neural Stem Cell on Multiple Sclerosis: A Systematic Review
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory demyelinating disorders of central nervous system (CNS). While the cause is unclear, the fundamental mechanism is thought to be destruction of myelin sheaths of neurons through immune system. One of the approaches being proposed in EAE therapy is neural stem cells (NSCs) trans...
متن کاملAlemtuzumab versus interferon β-1a in early relapsing-remitting multiple sclerosis: post-hoc and subset analyses of clinical efficacy outcomes.
BACKGROUND Alemtuzumab is a humanised monoclonal antibody that depletes lymphocytes, causing long-term immunomodulation. In a 3-year, rater-blinded phase 2 study (the CAMMS223 study) in patients with relapsing-remitting multiple sclerosis (RRMS), alemtuzumab reduced relapse rate and the risk of sustained accumulation of disability compared with subcutaneous interferon beta-1a, and the mean expa...
متن کاملThe Role of Stem Cell Therapy in Multiple Sclerosis: an Overview of the Current Status of the Clinical Studies
The complexity of multiple sclerosis (MS) and the incompetence of a large number of promise treatments in MS urge us to plan new and more effective therapeutic approaches that aim to suppress ongoing autoimmune responses and induction of local endogenous regeneration. Emerging data propose that hematopoietic, mesenchymal and neural stem cells have the potential to restore self-tolerance, to pro...
متن کاملMagnetization transfer imaging in multiple sclerosis treated with alemtuzumab.
The magnetization transfer ratio reflects the integrity of tissue structure, including myelination and axonal density. Mean magnetization transfer ratio fell in 18 untreated patients with multiple sclerosis both in normal appearing grey (-0.25 pu/year, p < 0.001) and white matter (-0.12 pu/year, p = 0.004). Conversely, mean magnetization transfer ratio was stable in 20 alemtuzumab-treated patie...
متن کاملAlemtuzumab: evidence for its potential in relapsing—remitting multiple sclerosis
Alemtuzumab (previously known as Campath(®)) is a humanized monoclonal antibody directed against the CD52 antigen on mature lymphocytes that results in lymphopenia and subsequent modification of the immune repertoire. Here we explore evidence for its efficacy and safety in relapsing-remitting multiple sclerosis. One Phase II and two Phase III trials of alemtuzumab versus active comparator (inte...
متن کامل